Julien Colin

PhD Student

julien.en.md photo

Julien Colin is an ELLIS PhD student. He holds a Bachelor’s degree in Physics and Chemistry (2019, University of Lorraine) and a Master’s degree in Cognitive Sciences: Natural and Artificial Cognition (2021, INP Grenoble). Before the start of his PhD, he worked as a research assistant; first at ANITI for 6 months (2021, Toulouse) then at Brown University for 5 months (2022, Providence). His PhD topic is centered around eXplainable AI and Neuroscience. In his research, he is interested in developing methods to better understand Intelligent systems. His supervisors are Nuria Oliver (ELLIS Alicante) and Thomas Serre (ANITI).

Google Scholar
Link to ORCID profile: ORCID iD icon https://orcid.org/0000-0003-0279-7095

Publications in association with ELLIS Alicante

2024

Riccio, P., Colin, J., Ogolla, S., & Oliver, N. (2024). Mirror, Mirror on the wall, who is the whitest of all? Racial biases in social media beauty filters. Social Media and Society .

2023

Fel, T., Boissin, T., Boutin, V., Picard, A., Novello, P., Colin, J., Linsley, D., Rousseau, T., Cadène, R., Gardes, L., & Serre, T. (2023). Unlocking Feature Visualization for Deeper Networks with MAgnitude Constrained Optimization. 37th Conference on Neural Information Processing Systems (NeurIPS) .
Boutin, V., Fel, T., Singhal, L., Mukherji, R., Nagaraj, A., Colin, J., & Serre, T. (2023). Diffusion Models as Artists: Are we Closing the Gap between Humans and Machines?. Proceedings of the International Conference on Machine Learning (ICML) .
Fel, T., Picard, A., Bethune, L., Boissin, T., Vigouroux, D., Colin, J., Cadène, R., & Serre, T. (2023). CRAFT: Concept Recursive Activation FacTorization for Explainability. Conference on Computer Vision and Pattern Recognition (CVPR) .

2022

Zerroug, A., Vaishnav, M., Colin, J., Musslick, S., & Serre, T. (2022). A Benchmark for Compositional Visual Reasoning. 36th Conference on Neural Information Processing Systems (NeurIPS), Datasets and Benchmarks .
Colin, J., Fel, T., Cadène, R., & Serre, T. (2022). What I Cannot Predict, I Do Not Understand: A Human-Centered Evaluation Framework for Explainability Methods. 36th Conference on Neural Information Processing Systems (NeurIPS) .
Fel, T., Hervier, L., Vigouroux, D., Poche, A., Plakoo, J., Cadène, R., Chalvidal, M., Colin, J., Boissin, T., Bethune, L., Picard, A., Nicodeme, C., Gardes, L., Flandin, G., & Serre, T. (2022). Xplique: A Deep Learning Explainability Toolbox. Conference on Computer Vision and Pattern Recognition (CVPR), Workshop on Explainable Artificial Intelligence for Computer Vision (XAI4CV) .